Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multilayer polymer films are extensively used in multiphase separation. Electrospray deposition (ESD) is an important technique for fabricating such films with tunable morphology. Viscoelastic properties of polystyrene (PS) nanoshell coatings produced by ESD on gold and spin‐coated PS surfaces are evaluated using Quartz Crystal Microbalance with Dissipation (QCM‐D). The thickness of PS films on gold increases with flow rate from ∼200 nm at 0.5 to ∼400 nm at 1.5 mL h^−1, accompanied by an order‐of‐magnitude increase in dissipation due to larger particle sizes from shorter droplet flight times. This effect is absent on spin–coated PS films, suggesting the onset of the self‐limiting effect of charges. Although the shear moduli for ESD films calculated from Voigt models is only 0.08%–0.20% of the bulk PS modulus, the stiffness ratio of spray‐coated PS to a single shell is (5.00–13.3) × 10^3 m^−1, due to shell–shell and shell–substrate interactions. These are novel results related to the interparticle friction obtained using QCM‐D for the first time. This work demonstrates that mechanical properties of particulate viscoelastic films with potential applications in high surface area sensors, such as size‐selective membranes for protein or electrolyte adsorption, can be evaluated by QCM‐D with nanograms of material.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Electrospray deposition (ESD) is employed to produce separator membranes for coin-cell lithium-ion batteries (LIBs) using off-the-shelf polyimide (PI). The PI coatings are deposited directly onto planar LiNi0.6Mn0.2Co0.2O2 (NMC) electrodes via self-limiting electrospray deposition (SLED). Scanning electron microscopy (SEM), optical microscopy, and spectroscopic microreflectometry are implemented in combination to evaluate the porosity, thickness, and morphology of sprayed PI films. Furthermore, ultraviolet-visual wavelength spectroscopy (UV vis) is utilized to qualitatively assess variation in film porosity within a temperature range of 20-400oC, to determine the stable temperature range of the separator. UV vis results underscore the ability of the SLED PI separator to maintain its porous microstructure up to ~350oC. Electrochemical performance of the PI separators is analyzed via charge/discharge cycle rate tests. Discharge capacities of the SLED PI separators are within 83-99.8% of commercial Celgard 2325 PP/PE/PP separators. This study points to the unique possibility of SLED as a separator manufacturing technique for geometrically complex energy storage systems. Further research is needed to optimize the polymer-solvent system to enhance control of porosity, pore size, and coating thickness. This can lead to significant improvement in rate and cycle life performance in more advanced energy storage devices.more » « lessFree, publicly-accessible full text available November 14, 2025
An official website of the United States government
